Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation
نویسندگان
چکیده
To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT-PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs.
منابع مشابه
Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.
Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantificati...
متن کاملSeven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis.
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root ...
متن کاملSpontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (N...
متن کاملSymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.
Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host...
متن کاملThe cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus.
The majority of land plants live in symbiosis with arbuscular mycorrhizal fungi from the phylum Glomeromycota. This symbiosis improves acquisition of phosphorus (P) by the host plant in exchange for carbohydrates, especially under low-P availability. The symbiosome, constituted by root cortex cells accommodating arbuscular mycorrhizal fungal hyphae, is the site at which bi-directional exchange ...
متن کامل